CVE-2026-23215
x86/vmware: Fix hypercall clobbers
Description
In the Linux kernel, the following vulnerability has been resolved: x86/vmware: Fix hypercall clobbers Fedora QA reported the following panic: BUG: unable to handle page fault for address: 0000000040003e54 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20251119-3.fc43 11/19/2025 RIP: 0010:vmware_hypercall4.constprop.0+0x52/0x90 .. Call Trace: vmmouse_report_events+0x13e/0x1b0 psmouse_handle_byte+0x15/0x60 ps2_interrupt+0x8a/0xd0 ... because the QEMU VMware mouse emulation is buggy, and clears the top 32 bits of %rdi that the kernel kept a pointer in. The QEMU vmmouse driver saves and restores the register state in a "uint32_t data[6];" and as a result restores the state with the high bits all cleared. RDI originally contained the value of a valid kernel stack address (0xff5eeb3240003e54). After the vmware hypercall it now contains 0x40003e54, and we get a page fault as a result when it is dereferenced. The proper fix would be in QEMU, but this works around the issue in the kernel to keep old setups working, when old kernels had not happened to keep any state in %rdi over the hypercall. In theory this same issue exists for all the hypercalls in the vmmouse driver; in practice it has only been seen with vmware_hypercall3() and vmware_hypercall4(). For now, just mark RDI/RSI as clobbered for those two calls. This should have a minimal effect on code generation overall as it should be rare for the compiler to want to make RDI/RSI live across hypercalls.
INFO
Published Date :
Feb. 18, 2026, 3:18 p.m.
Last Modified :
Feb. 18, 2026, 5:51 p.m.
Remotely Exploit :
No
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Solution
- Apply the kernel patch for x86/vmware.
- Ensure QEMU VMware mouse emulation is updated.
- Restart the affected system.
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2026-23215.
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2026-23215 is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2026-23215
weaknesses.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2026-23215 vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2026-23215 vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Feb. 18, 2026
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: x86/vmware: Fix hypercall clobbers Fedora QA reported the following panic: BUG: unable to handle page fault for address: 0000000040003e54 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20251119-3.fc43 11/19/2025 RIP: 0010:vmware_hypercall4.constprop.0+0x52/0x90 .. Call Trace: vmmouse_report_events+0x13e/0x1b0 psmouse_handle_byte+0x15/0x60 ps2_interrupt+0x8a/0xd0 ... because the QEMU VMware mouse emulation is buggy, and clears the top 32 bits of %rdi that the kernel kept a pointer in. The QEMU vmmouse driver saves and restores the register state in a "uint32_t data[6];" and as a result restores the state with the high bits all cleared. RDI originally contained the value of a valid kernel stack address (0xff5eeb3240003e54). After the vmware hypercall it now contains 0x40003e54, and we get a page fault as a result when it is dereferenced. The proper fix would be in QEMU, but this works around the issue in the kernel to keep old setups working, when old kernels had not happened to keep any state in %rdi over the hypercall. In theory this same issue exists for all the hypercalls in the vmmouse driver; in practice it has only been seen with vmware_hypercall3() and vmware_hypercall4(). For now, just mark RDI/RSI as clobbered for those two calls. This should have a minimal effect on code generation overall as it should be rare for the compiler to want to make RDI/RSI live across hypercalls. Added Reference https://git.kernel.org/stable/c/2687c848e57820651b9f69d30c4710f4219f7dbf Added Reference https://git.kernel.org/stable/c/2f467a92df61eb516a4ec36ee16234dd4e5ccf00 Added Reference https://git.kernel.org/stable/c/feb603a69f830acb58f78d604f0c29e63cd38f87